[VCLab-Main] [Software][HotEqn][Sums and Products]


Sums and Products

\Gamma(x)=\sum_{\nu=0}^{n-1} \frac{n!n^{x-1}}{x+\nu}
y(z) = \sum_{n \ge 0} z^n
V_n^m=\prod_{i=0}^{m-1}(n-i) = \frac{n!}{(n-m)!}
{\prod_{j\ge0}\left( \sum_{k\ge0} a_{jk}z^k \right)^{-1} = \frac 1 {\sum_{n\ge0} z^n \left(\sum_{k_0+k_1+\cdots=0}^n a_{0k_0} a_{1k_1}\ldots \right)}

[VCLab-Main] [Software][HotEqn][Sums and Products]


® CS 1998 , 2003